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Introduction

@ Machine learning on graphs is an crucial task with applications
ranging from drug design to friendship recommendation in social
networks.

o Primary Challenge : Finding a way to represent,or encode, graph
structure in lower dimension.

@ Recent Literature using techniques based on deep learning and
nonlinear dimensionality reduction.

@ We tried to make a survey of different approaches used to encode the
graph structure into embedding and made a comparative study of
their performances.



Random Walk Approaches - Deep Walk

@ Based on word?2vec
@ Random walk generator
e Sample a random vertex - random walk - sentences
@ Objective function
o minimise —logPr[(Vi—w, .., Vi—1, Vit1, - Vigw)| P (V)]
e Maximise log likelihood of context of vertex given its latent
representation
@ SkipGram model for gradient descent



Random Walk approaches - node2vec

o Flexiblity in random walk
@ 2 random walk hyperparams: p and g
@ Return parameter p controls likelihood of revisiting a node on

random walk
e High value = less likely
In-out parameter g controls likelihood of revisiting a nodes one-hop
neighborhood
e g > 1 = random walk is biased towards nodes closer to node
e g < 1 = biased towards nodes further away
@ Smooth interpolation between BFS-like (community structures) and
DFS-like walks (local structural roles)
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CNNs on graphs with Fast Localised Spectral Filtering

Graph Fourier Transform

Unnormalised Laplacian L=D—-W e RM™"
Normalised Laplacian L=1,— D Y2wWD~1/2
Eigendecomposition of L L=UANUT
Graph Fourier modes U =[uwo,...,un—1] € R™"
Frequencies of graph A=1[Xo,..., Ap—1] € R™"
Fourier transform of signal £x=UTxeR"
Inverse transform x = UX

RN




Spectral filtering in Fourier domain

e Convolution operator in Fourier domain: x x¢ g = F(x).F(g)

@ Spectral filtering:

Xout = . U , g(/\) UTXin = g(L)Xin

inverse transform spectral response  GFT

@ Polynomial filters: gy(\) = f;ol 0, \*, where § € RX is a vector of
polynomial coeffecients

Disadvantage: O(n?)

Solution: Use recursion of Chebyshev polynomials

Ti(x) = 2xTy_1(x) — Tx—2(x) with To =1 and T; = x

Compute scaled Chebyshev coeffecients i.e. A = 2A/Apmax — I, such
that eigenvalues lie in [-1,1]

g(\) = X050 Ok T(A)
o K-localised filter with O(KE) complexity



Graph Convolution Network

Why Graphs :- Graphs are a general language for describing and
modeling complex systems.

@ How to represent graphs :- Embeddings
@ Node embedding :- Map nodes to low-dimensional embeddings.

e Given a network/graph G=(V, E, W), where V is the set of nodes, E
is the set of edges between the nodes, and W is the set of weights of
the edges, the goal of node embedding is to represent each node i
with a vector , which preserves the structure of networks.

@ Belief :- Nodes have similar embeddings tend to co-occur on short
random walks over graph



GCN:WHY are they Special

@ Graph neural networks :- Deep learning architectures for graph
structured data.

@ Neighborhood Aggregation

@ Intuition: Nodes aggregate information from their neighbors using
neural networks. Network neighborhood defines a computation graph.

@ GCNs are a slight variation on the neighborhood aggregation idea.

@ Each Convolutional layer captures the next hop information in the
network.

@ Usually 2-3 layers deep.



GraphSAGE

@ Graph SAmpling and aggreGatE
@ Adaptation of GCN Idea to Inductive Embedding

@ Leverages node feature information to efficiently generate node
embeddings functions that generalizes to unseen nodes.

@ Learn a function that generates embeddings by sampling and
aggregating features from a node's local neighborhood upto certain
layers(search depth).

@ During test, we use our trained system to generate embeddings for
entirely unseen nodes by applying the learned aggregation functions.
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GraphSAGE:Motivation

Basic Idea : Nodes neighborhood defines a computation graph.

k=2

1. Sample neighborhood 2. Aggregate feature information
from neighbors

Learn how to propagate information across the graph to compute node
features
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GraphSAGE:Algorithm

h! + x,, Yo eV;

fork =1...K do

forv € Vdo

hf; () < AGGREGATE({hj~",Vu € N(v)});

h" o (Wk . CONCAT(hq"jfl,hﬁ/@)D

end
b bl /|[hs ]2, Vo € V

end
z, < h Yo ey
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GraphSAGE:Example
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Graph Attention Network

@ Attention mechanism have become de defacto standard in many
sequence -based tasks.

@ One of benefits of attention mechanisms is that they allow for dealing
with variable sized inputs, focusing on the most relevant parts of the
input to make a decision.

@ Introducing the same concept in graphs, this architecture computes
the hidden representations of each node in the graph by attending
over its neighbours.

@ This architecture doesn't take the number of neighbours into
consideration.
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Graph Attention Layer

. . .
o Let input to the layer be h = hy, ho, .., hy, hi € RF where N is the
number of nodes and F is the number of features in the node
@ The layer produces a new set of node features

5= o :
h=H hy, ... hy, b € RF

@ A shared attention mechanism a: RF, X RF/ — R computes
attention coefficients
==
exp(LeakyReLU(?[Wh,—HWhj]))
- =
> keN, exp(LeakyReLU(?[Wh,- [|Whg]))

Qjj =

_ =
o Finally the output of each layer h; can be calculated as

K
7; = J(%Z Z af}WkF;)

k=1j€EN;
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Advantages of Graph Attention Layer

o Computationally highly efficient: the operation of the self-attentional
layer can be parallelized across all edges, and the computation of
output features can be parallelized across all nodes.

@ No eigendecompositions or similar costly matrix operations are
required.

@ As opposed to GCNs, our model allows for (implicitly) assigning
different importances to nodes of a same neighborhood.

@ Analyzing the learned attentional weights may lead to benefits in
interpretability.
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Experiment Results

Node Classification Task

Comparison of F1-Score in Different Approaches

W GCN [ GraphSAGE GAT
100

cora Citeseer Pubmed
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Exploring more variants of GraphSAGE.
Experimenting with Heterogenious and Dynamic Network
Time comparisons between the different variants of GCN.

Exploring other down-stream tasks like Anomaly Detection,Link
Prediction,Community Detection.
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Useful Resources

@ Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Onlinelearning of
social representations.

@ Grover, A. and Leskovec, J. Node2vec:Scalable featurelearning for
networks.

o Kipf, T. N. and Welling, M.Semi-supervised classi-fication with graph
convolutional networks.

@ Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-sentation
learning on large graphs.

@ Velickovi ¢, P., Cucurull, G., Casanova, A., Romero, A. Lio, P., and
Bengio, Y. Graph attention networks.
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