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Introduction

Machine learning on graphs is an crucial task with applications
ranging from drug design to friendship recommendation in social
networks.

Primary Challenge : Finding a way to represent,or encode, graph
structure in lower dimension.

Recent Literature using techniques based on deep learning and
nonlinear dimensionality reduction.

We tried to make a survey of different approaches used to encode the
graph structure into embedding and made a comparative study of
their performances.
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Random Walk Approaches - Deep Walk

Based on word2vec

Random walk generator

Sample a random vertex - random walk - sentences

Objective function

minimise −logPr [(vi−w , .., vi−1, vi+1, .., vi+w )|Φ(vi )]
Maximise log likelihood of context of vertex given its latent
representation

SkipGram model for gradient descent
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Random Walk approaches - node2vec

Flexiblity in random walk
2 random walk hyperparams: p and q
Return parameter p controls likelihood of revisiting a node on
random walk

High value ⇒ less likely
In-out parameter q controls likelihood of revisiting a nodes one-hop
neighborhood

q > 1 ⇒ random walk is biased towards nodes closer to node
q < 1 ⇒ biased towards nodes further away

Smooth interpolation between BFS-like (community structures) and
DFS-like walks (local structural roles)
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CNNs on graphs with Fast Localised Spectral Filtering

Graph Fourier Transform

Unnormalised Laplacian L = D −W ∈ Rn×n

Normalised Laplacian L = In − D−1/2WD−1/2

Eigendecomposition of L L = UΛUT

Graph Fourier modes U = [u0, ..., un−1] ∈ Rn×n

Frequencies of graph Λ = [λ0, ..., λn−1] ∈ Rn×n

Fourier transform of signal x̂ = UT x ∈ Rn

Inverse transform x = Ux̂
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Spectral filtering in Fourier domain

Convolution operator in Fourier domain: x ∗G g = F (x).F (g)

Spectral filtering:
xout = U︸︷︷︸

inverse transform

g(Λ)︸︷︷︸
spectral response

UT xin︸ ︷︷ ︸
GFT

= g(L)xin

Polynomial filters: gθ(λ) =
∑K−1

k=0 θkΛk , where θ ∈ RK is a vector of
polynomial coeffecients

Disadvantage: O(n2)

Solution: Use recursion of Chebyshev polynomials

Tk(x) = 2xTk−1(x)− Tk−2(x) with T0 = 1 and T1 = x

Compute scaled Chebyshev coeffecients i.e. Λ = 2Λ/λmax − In, such
that eigenvalues lie in [-1,1]

gθ(λ) =
∑K−1

k=0 θkTk(Λ̃)

K-localised filter with O(KE ) complexity
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Graph Convolution Network

Why Graphs :- Graphs are a general language for describing and
modeling complex systems.

How to represent graphs :- Embeddings

Node embedding :- Map nodes to low-dimensional embeddings.

Given a network/graph G=(V, E, W), where V is the set of nodes, E
is the set of edges between the nodes, and W is the set of weights of
the edges, the goal of node embedding is to represent each node i
with a vector , which preserves the structure of networks.

Belief :- Nodes have similar embeddings tend to co-occur on short
random walks over graph
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GCN:WHY are they Special

Graph neural networks :- Deep learning architectures for graph
structured data.

Neighborhood Aggregation

Intuition: Nodes aggregate information from their neighbors using
neural networks. Network neighborhood defines a computation graph.

GCNs are a slight variation on the neighborhood aggregation idea.

Each Convolutional layer captures the next hop information in the
network.

Usually 2-3 layers deep.
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GraphSAGE

Graph SAmpling and aggreGatE

Adaptation of GCN Idea to Inductive Embedding

Leverages node feature information to efficiently generate node
embeddings functions that generalizes to unseen nodes.

Learn a function that generates embeddings by sampling and
aggregating features from a node’s local neighborhood upto certain
layers(search depth).

During test, we use our trained system to generate embeddings for
entirely unseen nodes by applying the learned aggregation functions.

10 / 19



GraphSAGE:Motivation

Basic Idea : Nodes neighborhood defines a computation graph.

Learn how to propagate information across the graph to compute node
features
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GraphSAGE:Algorithm
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GraphSAGE:Example
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Graph Attention Network

Attention mechanism have become de defacto standard in many
sequence -based tasks.

One of benefits of attention mechanisms is that they allow for dealing
with variable sized inputs, focusing on the most relevant parts of the
input to make a decision.

Introducing the same concept in graphs, this architecture computes
the hidden representations of each node in the graph by attending
over its neighbours.

This architecture doesn’t take the number of neighbours into
consideration.
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Graph Attention Layer

Let input to the layer be h =
−→
h1,
−→
h2, ..,

−→
hN ,
−→
hi ∈ RF where N is the

number of nodes and F is the number of features in the node

The layer produces a new set of node features

h =
−→
h
′
1,
−→
h
′
2, ..,
−→
h
′
N ,
−→
hi ∈ RF

′

A shared attention mechanism a : RF
′
× RF

′
→ R computes

attention coefficients

αij =
exp(LeakyReLU(

−→
aT [W

−→
hi ||W

−→
hj ]))∑

k∈Ni
exp(LeakyReLU(

−→
aT [W

−→
hi ||W

−→
hk ]))

Finally the output of each layer
−→
h
′
i can be calculated as

−→
h
′
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k−→hj )

15 / 19



Advantages of Graph Attention Layer

Computationally highly efficient: the operation of the self-attentional
layer can be parallelized across all edges, and the computation of
output features can be parallelized across all nodes.

No eigendecompositions or similar costly matrix operations are
required.

As opposed to GCNs, our model allows for (implicitly) assigning
different importances to nodes of a same neighborhood.

Analyzing the learned attentional weights may lead to benefits in
interpretability.
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Experiment Results

Node Classification Task
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Future Work

Exploring more variants of GraphSAGE.

Experimenting with Heterogenious and Dynamic Network

Time comparisons between the different variants of GCN.

Exploring other down-stream tasks like Anomaly Detection,Link
Prediction,Community Detection.
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Useful Resources

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Onlinelearning of
social representations.

Grover, A. and Leskovec, J. Node2vec:Scalable featurelearning for
networks.

Kipf, T. N. and Welling, M.Semi-supervised classi-fication with graph
convolutional networks.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-sentation
learning on large graphs.

Velickovi c, P., Cucurull, G., Casanova, A., Romero, A.,Lio, P., and
Bengio, Y. Graph attention networks.
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